每個人都有自己的選擇和人生,很多同學一開始就有明確的目標,想要學習一門自己喜歡的技術(shù)。隨著國家多中等職業(yè)學校招商力度的加強,更多的學生也選擇了報考中職中專學校。但是還有不少家長和學生對中職中專的相關(guān)信息知之甚少。有這各種各樣的疑問,其中2019高考數(shù)學大題的最佳解題技巧及解題思路就是大家比較想了解的一個問題,今天,大學路小編為大家?guī)砹?019高考數(shù)學大題的最佳解題技巧及解題思路,希望能幫助到廣大考生和家長,一起來看看吧!
掌握數(shù)學解題思想是解答數(shù)學題時不可缺少的一步,建議同學們在做題型訓練之前先了解數(shù)學解題思想,掌握解題技巧,并將做過的題目加以劃分,以便在高考前一個月集中復習。
六種解題技巧
一、三角函數(shù)題
注意歸一公式、誘導公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
六、導數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數(shù)的定義域,正確求出導數(shù),特別是復合函數(shù)的導數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號);
2、注意最后一問有應用前面結(jié)論的意識;
3、注意分論討論的思想;
4、不等式問題有構(gòu)造函數(shù)的意識;
5、恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭10分,想14分。
五種數(shù)學答題思路
在高考時很多同學往往因為時間不夠?qū)е聰?shù)學試卷不能寫完,試卷得分不高,掌握解題思想可以幫助同學們快速找到解題思路,節(jié)約思考時間。以下總結(jié)高考數(shù)學五大解題思想,幫助同學們更好地提分
一、函數(shù)與方程思想
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學們在解題時可利用轉(zhuǎn)化思想進行函數(shù)與方程間的相互轉(zhuǎn)化。
二、 數(shù)形結(jié)合思想
中學數(shù)學研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學們在解答數(shù)學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
三、特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用
四、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對于所求的未知量,先設法構(gòu)思一個與它有關(guān)的變量;二、確認這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位置直接計算結(jié)果
五、分類討論思想
同學們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學概念本身具有多種情形,數(shù)學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學們在分類討論解題時,要做到標準統(tǒng)一,不重不漏。
以上就是大學路整理的2019高考數(shù)學大題的最佳解題技巧及解題思路相關(guān)內(nèi)容,想要了解更多中職中專學校信息,敬請查閱大學路。
距離寒假結(jié)束已經(jīng)所剩無幾了,孩子們又要迎來學校時光了,小編建議各位家長幫助孩子在這段時間提前進入學習
2020年07月13日 14:15中國海洋大學位于山東省青島市,屬于綜合性大學!想知道高考多少分能上中國海洋大學嗎?那就趕緊和專注教育
2021年08月13日 14:14武漢工程大學是一些同學比較中意的學校。不過,還是有同學對于華北電力大學的一些信息不太清楚,專注教育小
2020年07月13日 10:06西北民族大學是一些同學比較中意的學校。但是,大家都知道大學在不同的省市招生批次是不一樣的,所以有很多
2021年08月14日 14:14在進行高考填報志愿的時候時,選報一個號的專業(yè)是考生和家長非常關(guān)心的一件事情!本期,我們就以電子科技大
2020年07月13日 10:26近年來,國家大力發(fā)展水利水電工程,這也在一定程度上促進了水利水電工程專業(yè)的發(fā)展!!!本期,專注教育一
2020年07月13日 09:49生活中,很多時候人們都會選擇中醫(yī)去調(diào)養(yǎng)身體,醫(yī)治疾病!中醫(yī)是中國千年文化的精粹,更是讓世界為之震撼的
2021年08月20日 13:50在高考志愿填報的過程中,有一些同學對于大學所在的城市比較在意,畢竟是要生活4年的地方!!!對于想要在
2020年07月11日 11:24很多同學在選擇學校的時候,對于學校都不是很了解,畢竟全國的大學很多,進行選擇的時候也只是零星的了解。
2020年07月11日 10:27一些計劃報考東北大學的同學們,對東北大學并不是很了解,不少同學都咨詢小編東北大學好不好?東北大學在全
2020年07月11日 10:38教育部:推動有條件的地方優(yōu)化學前教育班額和生師比
時間:2024年11月12日教育部:嚴格幼兒園教師資質(zhì)條件,把好教師入口關(guān)
時間:2024年11月12日教育部:教職工存在師德師風問題、侵害幼兒權(quán)益要依法嚴肅追究責任
時間:2024年11月12日教育部:教師存在師德師風問題,損害幼兒身心健康的,要依法追究責任
時間:2024年11月12日教育部:2023年全國普惠性幼兒園覆蓋率達90.8%
時間:2024年11月12日遼寧省五校聯(lián)考2024高三期末考試政治試題及答案
時間:2024年01月10日遼寧省五校聯(lián)考2024高三期末考試歷史試題及答案
時間:2024年01月10日河南省新未來2024高三12月聯(lián)考數(shù)學試題
時間:2024年01月03日新2024高三12月聯(lián)考英語試題
時間:2024年01月03日備考練習:2020年天津高考語文作文題及解析
時間:2024年01月03日2020大學路版權(quán)所有 All right reserved. 版權(quán)所有
警告:未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品